A multiplier method with a class of penalty functions for convex programming
نویسندگان
چکیده
We consider a class of augmented Lagrangian methods for solving convex programming problems with inequality constraints. This class involves a family of penalty functions and specific values of parameters p, q, ỹ ∈ R and c > 0. The penalty family includes the classical modified barrier and the exponential function. The associated proximal method for solving the dual problem is also considered. Convergence results are shown, specifically we prove that any limit point of the primal and the dual sequence generated by the algorithms are optimal solutions of the primal and dual problem respectively.
منابع مشابه
Dual convergence for penalty proximal point algorithms in convex programming
We consider an implicit iterative method in convex programming which combines inexact variants of the proximal point algorithm, with parametric penalty functions. We investigate a multiplier sequence which is explicitly computed in terms of the primal sequence generated by the iterative method, providing some conditions on the parameters in order to ensure convergence towards a particular dual ...
متن کاملPenalty/Barrier Multiplier Methods for Convex Programming Problems
We study a class of methods for solving convex programs, which are based on nonquadratic Augmented Lagrangians for which the penalty parameters are functions of the multipliers. This gives rise to lagrangians which are nonlinear in the multipliers. Each augmented lagrangian is speciied by a choice of a penalty function ' and a penalty-updating function. The requirements on ' are mild, and allow...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملA Concave Conjugate Approach for Nonconvex Penalized Regression with the MCP Penalty
The minimax concave plus penalty (MCP) has been demonstrated to be effective in nonconvex penalization for feature selection. In this paper we propose a novel construction approach for MCP. In particular, we show that MCP can be derived from a concave conjugate of the Euclidean distance function. This construction approach in turn leads us to an augmented Lagrange multiplier method for solving ...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016